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Abstract 

An X-ray interference phenomenon associated with 
the superposition of reflected waves corresponding to 
the different diffraction types may be observed for 
finite polyhedral crystals. Using plane-wave solu- 
tions, the interference patterns are analyzed for the 
two specific geometries of the crystal profile. The 
computer simulations supplement the theoretical 
inferences and fit the experimental results. 

Introduction 

Theoretical analysis of X-ray diffraction on crystals 
with arbitrary boundary conditions is a very compli- 
cated problem within the framework of the dynamic 
theory. Although research in this area has been hard 
to realize experimentally, a few studies have contri- 
buted significantly to the theoretical and experimen- 
tal investigation of diffraction geometries different 
from the conventional Bragg and Laue ones (Becker 
& Dunstetter, 1984; Lehmann & Borrmann, 1967; 
Saka, Katagawa & Kato, 1972a,b; Uragami, 1969, 
1970, 1971). The most convenient classification and 
terminology for the possible geometries of X-ray 
diffraction by finite polyhedral crystals were pro- 
vided by Saka, Katagawa & Kato (1972a,b), together 
with a complete theory for plane- and spherical- 
wave approximations. Amongst other things, 
the spherical-wave solutions obtained completely 
described the so-called Borrmann-Lehmann inter- 
ference effect and facilitated treatment of the experi- 
mental data (Lang, Kowalski & Makepeace, 1990). 

As discussed by Saka, Katagawa & Kato (1972a), 
the Laue-Bragg diffraction geometry under which 
Borrmann-Lehmann interference fringes have been 
generated is just the simplest member of a family of 
geometries involving Laue-case boundary conditions 
at the entrance surface and Bragg-case boundary 
conditions at the exit surface. Previously, the fabri- 
cation of specimens suitable for experiments of this 
type faced technological difficulties that can now be 
overcome by using procedures such as photolithog- 
raphy, ion-plasma etching and anisotropic etching. 
Very interesting experimental results from the obser- 
vation of diffracted-wave spectra from a periodic 
© 1993 International Union of Crystallography 
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single-crystal structure were recently presented by 
Aristov et al. (1988). Sufficiently high diffraction- 
pattern contrast was revealed and the so-called 
'thickness oscillations' of the main peak were 
recorded. The interpretation of the observed effects 
was made from the viewpoint of the kinematical 
theory. The surface profiling of silicon single crystals 
was successfully used for the fabrication of Bragg- 
Fresnel zone plates, on which focusing and image 
transmission of a periodic object were obtained 
(Aristov et al., 1992). 

The above created a need for more careful 
research into X-ray diffraction in polyhedral crystals. 
This paper presents experimental topographs of 
crystals with rectangular edge and rectangular sur- 
face profiles as well as analytical interpretation and 
computer simulation of the observed interference 
phenomena. 

Diffraction geometry 

Because the diffraction geometries involved fall 
within the classification given by Saka et al. (1972a), 
their terminology is used. In the first case, illustrated 
in Fig. l(a), a plane wave illuminates the crystal, 
whose facets are perpendicular (,4B) and parallel 
(BC) to the reflecting planes. Consequently, one has 
symmetric Bragg diffraction on the top surface, BC, 
and symmetric Laue-Bragg diffraction on the lateral 
surface, AB. The incident-wave direction is defined 
by the vacuum wave vector Ko, while the direction of 
the diffracted wave is taken as Kh = Ko + h, where h 
is the reciprocal-lattice vector. For the given geom- 
etry, the interest lies in the intensity distribution 
along the exit surface BC, which involves the super- 
position of Bragg and Laue-Bragg waves. 

f12 / K h  
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(a) (b) 
Fig. 1. Illustrations of the geometry of the crystal profiles: 

(a) type A; (b) type B. 
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The second geometry, shown in Fig. l(b), com- 
prises a more complicated configuration of surfaces, 
of which two (AB and CD) are parallel to the 
reflecting planes and one (BC) is perpendicular. Con- 
sideration is restricted to the intensity distribution 
along the initial part of the surface CD, which is the 
most interesting location of wave-field superposition 
because one obtains a combination of three diffrac- 
tion types at once: Bragg-Bragg, Laue-Bragg type I 
and Laue-Bragg type II. This geometry is of particu- 
lar interest because under certain conditions it makes 
possible the interference of two Bragg-Bragg waves 
virtually without any influence from Laue-Bragg 
diffraction. This may occur because the exact angu- 
lar positions for the Bragg and Laue cases are dis- 
placed with respect to each other by A O =  
,go/sin (20B). In this case, the optical path difference 
between the waves reflected from the top and bottom 
facets depends on the height of the ridge, H,, and on 
the deviation from the Bragg condition. Conse- 
quently, this geometry may be considered to be 
analogous to that of an optical interferometer and 
may be used for the determination of the X-ray 
coherency. 

P l a n e - w a v e  so lu t ion  

The plane-wave solutions for the wave fields inside a 
crystal and for waves coming out of a crystal in the 
Laue-Bragg case (types I and II) were thoroughly 
considered by Saka et al. (1972a). In this case, it is 
suggested that all reflections associated with the 
appropriate diffraction types are symmetric. In Fig. 
1, unit vectors no, n~ and n2 denote the normals to the 
corresponding facets. Let a plane monochromatic 
X-ray wave of unit amplitude exp (iKo" r) be incident 
on a crystal. Then, for the Laue-Bragg case of type 
I, the wave emerging from the exit surface is 

Ei(r2)=Chexp[iKh.rl + ikh • (r2-- rl)] (la) 
C ,=  w */[*/_+ (1 + ,/2)1/2]/(1 + */2)1/2 (lb) 

• / = ( 0 a - 0 ) s i n ( 2 0 B ) / j ' , ,  ~ ' ,=C(x .X-h)  ~/2, (lc) 

where positive and negative signs correspond to 
branch (1) and branch (2) waves, respectively, and 
the vectors rl and r2 indicate positions on the crystal 
surfaces AB and BC, respectively. For the sake of 
simplicity, the Fourier coefficients of the polariz- 
ability, Xo, X., X-h, are assumed to be real. The wave 
vector ku is related to K0 by 

kh = ko + h, (2a) 

ko = Ko - KSonl, (2b) 

K~o = -(KXo/2COS Oa) - (K~'h/2COS OB) 

x [-*/+__ (1 + n2)"2]. (2c) 

At the exact Bragg position (*/= 0), the wave 
fields corresponding to the different dispersion sur- 
face branches are totally reflected from the exit 
surface, so that no intensity comes out from the 
crystal. When */;~ 0, just one Bloch wave gives rise 
to the vacuum wave; namely, the one with the 
Poynting vector directed toward the exit surface. The 
second solution (Saka et al., 1972a) may be 
considered as a hypothetical reflection from an 
imaginary extension of the exit surface. Therefore, 
there is only one physically significant solution, 
which is 

f C (2) for */> 0 (3) 
C. = ~1. C~. ~ for */< 0 

From (2a)-(2c), (la) can be rewritten as 

Ei(r2) = Chexp[-iK6onl "(r2 - rl) + iKh" r2]. (4) 

Let us introduce the position parameter t, the dis- 
tance from the observation point on the exit surface 
to the crystal edge: 

t =  (r2 -- r l )" nl .  (5)  

Then, (4) can be rewritten as 

Ei(r2) = C~, exp (iKb" rE), (6a) 

C~, = Ch exp ( -  iKSot). (6b) 

For the Laue-Bragg case of type II, the wave 
emerging from the exit surface is 

Eii(r2) = Coexp[iKo'r l  + i k o ' ( r E - r 0 ] ,  (7a) 

Co = -+ *//(1 + 7.]2)1/2. (7b) 

Similar reasoning shows that 

{C~} 1) f o r * / >  0 (8) 
Co= C~2) f o r * / < 0  

Likewise, (7a) can be rewritten as 

El,(r2) = C~ exp {iKo" r2}, (9a) 

C~ = Co exp { -  iKSot}. (9b) 

The plane-wave solution for the Bragg case is well 
known and can be written as 

EB(r2) = Cs exp (iKh "r2), 

C a = { ~ - i ( 1 - / 3 2 )  '/2, 
_71_ (/32 -- 1)1/2, 

/3 = X O / ~ h  - -  */, 

(10a) 

1/31~ 1 (10b) 
1/31> 1 ' 

(lOc) 

where the upper sign corresponds to /3 > 1 and the 
lower sign corresponds to /3  < -  1. The exact Bragg 
position in this case is determined as 13 = 0, i.e. 

0 = 0B - Xo/sin (20a), (11) 

which is due to the refraction of the incident wave on 
the crystal boundary. 
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Let us now consider the diffraction geometry illus- 
trated in Fig. l(a). The wave emerging from the exit 
surface BC is a superposition of Bragg and Laue-  
Bragg wave fields. Hence, it can be written as 

Eh(r2)=(Cn + C~) exp (iKh • r2). (12) 

If diffraction occurs in the region 1/31> l, then the 
intensity is 

Ib(t)= C2B + cE + 2CBCnCOS(KSot). (13) 

Thus, the intensity of the outcoming wave is 
modulated with a period 

D = 2~ / IKao l .  (14) 

It is readily seen that there is a point r/o where the 
period turns into infinity, i.e. 1(8o = O, 

n o -  - ( s  ¢ 2 -  1)/2s x, s ¢ -  --XO/Xh. (15) 

With increase in the deviation (It/l--, oo), the period 
decreases and tends to zero. 

In the angular region 1/31 < 1, the diffracted inten- 
sity is 

l,(t) = 1 + C~, + 2Ch sin (0 + Krot), (16a) 

= arctan[/3/(1 -/32)~/z]. (16b) 

Thus, the period of the oscillations is identical to (14) 
but the location of the interference maxima depends 
additionally on the position inside the angular region 
through the phase parameter ~b. 

Investigating the second diffraction geometry, one 
should take into account the fact "that the wave 
reflected from the surface A B  propagates in a 
vacuum with the wave vector Kh., (see Fig. lb). 
Therefore, on the surface BC, this wave appears as 

E(rl) = Csexp{iKn,," ( r l -  ro) + iKH" r0}, (17a) 

Kh,v = Kh -- KShno, (17b) 

KSh = [ KYCh/sin ( O n) ]~7, (17C) 

where Krh is a linear approximation defined from the 
condition IKol = IKh.,I = 2rr/,~. Consequently, the 
wave on the surface CD is defined as 

En(r2) = (7 exp (iKn "r2), (18a) 

( ? = C n C o e x p ( - i K r o t - i K r h H , ) ,  (18b) 

H, = (r2 - r0)" no. (18c) 

The combined wave field is made up of three waves: 

E,(r2) = En(r2) + Ei(r2) + En(r2). (19) 

It is easily seen that at sufficiently large deviation, 
1,71>> 1, the influence of the Laue-Bragg case upon 
the interference pattern is negligible while the Bragg 
~ntensity may still be strong or even a maximum. 
This can be achieved, for instance, by choosing 
high-order reflections. Then, the exact Bragg position 

/3 =0  corresponds to r/s = Xo/)(n, which may be well 
above unity. In this approximation, the intensity of 
the reflected wave is 

Ih(t)--4lCnl z cos2[½(AKt + KShHr)], (20a) 

A K  = - KXo/2 cos (0n). (20b) 

Hence, the outcoming intensity is fully modulated in 
amplitude with the period 

DB = 2rr/IaKl (21a) 

and the initial phase is 

q~o = KShHr. (21 b) 

In a general case, the periodicity of the inter- 
ference pattern is conserved but the oscillation 
amplitude depends on the particular reflection 
parameters in a more complicated way. The dis- 
tinctive property of this geometry is that the period 
of the oscillations may not become infinite and for 
[r/I >> 1 becomes constant [(21a)]. 

Experiment and simulation 

The experiments were performed using C u K a  
radiation and a parallel double-crystal scheme. The 

C X 
C 2 

Fig. 2. The experimental scheme: S represents the source; C~ and 
6"2 indicate the slits; M is the monochromator; X is the speci- 
men; and F is the photoplate. 

Fig. 3. Scanning electron microscope (SEM) view of the lateral 
surface of the silicon wafer prepared for the type-A diffraction 
setting (cf Fig. la). Crystal thickness T--- 250 ~m. 
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general layout of the experiments is shown 
schematically in Fig. 2. In the case of the first 
diffraction geometry (Fig. la), the symmetric 220 
reflection from the sample and the asymmetric 220 
reflection from the monochromator with the asym- 
metry factor b = y,/yo - 37 were used. The rectangu- 
lar edge was fabricated from a dislocation-free 
single-crystal silicon wafer by traditional methods of 
photolithography and subsequent anisotropic etch- 

15 g m  

( a )  

ing (Fig. 3). Fig. 4 shows magnified parts of the 
topographs taken at various angular positions. The 
relevant computer simulation is shown in Fig. 5. 
Because of the photoelectric absorption, the ampli- 
tude of the interference oscillations decreases with 
distance from the crystal edge. Also, the unpolarized 
radiation gives rise to periodical beats of the fringe 
intensity similar to the polarization beats of the 
Pendell6sung fringes in the Laue-Laue case. Both 
effects lead to the rapid deterioration of the fringe 
visibility away from the edge. 

From the pictures obtained, it is readily seen that 
the fringe period tends to widen as the deviation 
parameter decreases (~7-'0). For the given experi- 
mental conditions and polarized radiation, the fringe 
period turns into infinity at ~7o = -0 .5  (AO= 
- 1.24"), while the exact Bragg position (fl = 0) cor- 
responds to ~Ts = -  1.65 (,40 = - 4 . 1 " ) .  Thus, the 
topograph shown in Fig. 4(a) was taken in the 
vicinity of ~7o and, consequently, the tendency 
towards a decreasing fringe period agrees with the 
theoretical inference. The period of the fringes in 
Fig. 4(d) is in agreement with that calculated and 
displayed in Fig. 5(d) and has D = 3 . 7  I~m in a 
registration plane. The dependence of the interfer- 
ence fringes on the deviation parameter, obtained 
from the computer simulation, is demonstrated in 
Fig. 6. The plots were calculated taking into account 
photoelectric absorption and unpolarized incident 
radiation. 

(b) 

(c) 

B 
( a )  

(b) 

(c) 

(d) 
Fig. 4. Observed topographs showing interference fringes in the 

type-A diffraction setting (cf. Fig. la). (a) 7/= -0.32; (b) ~7 = 
- 1 . 2 5 ;  (c) 7 / =  - 2 . 1 3 ;  (d) 77 = - 2 . 5 .  

(d) 
Fig. 5. Simulated topographs showing interference fringes in 

the type-d setting (cf. Fig. la). (a) 7/= -0.32; (b) ~7 = -1.25; 
(c) 77 = -2,13; (d) r/= -2.5. 
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To realize the diffraction geometry illustrated in 
Fig. l(b), the periodical relief fabricated on the 
single-crystal silicon wafer by photolithography and 
subsequent reactive ion-plasma etching was used. 
The experimental conditions were as follows: mono- 
chromator with 511 reflection and asymmetry factor 
b = 12; sample with 333 reflection, relief period Dr = 
60 Ixm (width of ridge ---30 Ixm) and relief height 
Hr = 10 ~m (Fig. 7). The reflection used makes it 
possible to suppress zr polarization and separate 

(b) 

( c ) ~  

( d ) ~  

( e ) ~  

0 20 40 60 80 1 O0 
EXIT SURFACE (tJm) 

Fig. 6. Computed intensity profiles in the case of type-A setting 
(cf Fig. la), Cu Kt~ radiation and 220 reflection. (a) 7/= -2.45; 
(b) r /= -2.05; (c) r /= - 1.65; (d) 7/= - 1.25; (e) r /= -0.85. 

. - , . .  . 

clearly the exact positions for Bragg and Laue cases 
because the angular spacing between them is AO= 
3" while the width of the rocking curve is tos=2 ''. 

Fig. 8 shows topographs taken at three angular 
positions of the crystal, where the left half of each 
image corresponds to the reflection from the crystal 
substratum. At fl = 0 (Fig. 8a), the deviation param- 
eter is r/s = -3 .4  and, therefore, it is conceivable 
that only the Bragg case significantly affects the 
interference pattern. The fringe period in this 
instance is D s  = 13.8 Ixm along the exit surface. 
Because the interference region T= H, / tan  (Os) is 
less than the oscillation period (T=9.2 txm), only 
half of the first period can be seen in the neigh- 
borhood of the ridge edges. The initial phase for the 
given relief height is ~o0 = 2.67r, i.e. there is actually 
no shift of fringes with reference to the ridge edge. 
To displace the interference fringes by one period, 
the increment of the ridge height must be AHr = 
2rr/lK~h[, that is AHr= 7.5 ~m at fl = 0, or the angu- 

i t  
t 

150 lam 

(b) 

(a) 

Fig. 7. SEM view of the periodical relief fabricated for the type-B 
diffraction setting (cf Fig. lb). Period D=60 I~m, height H,=  
10 Ixm. 

ili 
~ v  t 

(c) 

Fig. 8. Observed topographs showing the intensity distribution 
from the periodical relief. The pictures obtained illustrate the 
type-B diffraction setting (cf. Fig. lb). (a) r /= -3.36 (/3 = 0); 
(b) r /= - 6.72 (fl = 3.36); (c) 7/= 0 (/3 = - 3.36). 
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lar increment must be A r /=  Aotan (8B)IHr [Ao = 
,~COS(OB)/~'h], that is A t /=  2.5. Figs. 8(b) and (c) 
display topographs taken at the angular positions A0 
=--+3" (dr/'-" -+3.4) with respect to the point at 
which fl =0. The nature of the interference of the 
patterns at these points is clearly revealed by the high 
contrast between intensities diffracted by the substra- 
tum and by the ridges. Shown in Fig. 9 are the 
simulated topographs at the pertinent angular 
points, obtained for the plane incident wave. To aid 
comprehension of how the image is formed, the relief 
profile, divided into specific diffraction zones, is 
shown schematically beneath the topographs. 

Fig. l0 shows the simulated intensity profiles for 
the case of a ridge sufficiently high for the behavior 
of the interference fringes to be observed. As 
expected, for 1771 >>l (Figs. 10a and b), the period 
of the main maxima coincides with the limiting value 
[(21a)] and gives DB= 13.8 Ixm along the exit sur- 
face. The plane-wave solutions for the Laue-Bragg 
case imply that at the point r /= 0 the Bloch waves in 
the crystal are totally reflected from the exit surface. 
Consequently, there must be no interference fringes 
at this point. Nevertheless, the computer simulation 
(Fig. 10c) shows the persistence of the interference 
oscillations, although their amplitude is damped with 
distance from the edge. 

Fig. 9. Simulated topographs  showing the intensity distribution 
f rom the periodical relief (three periods). The pictures illustrate 
the type-B setting (cf. Fig. lb). (a) r / =  - 3.36 (/3 = 0); (b) 77 = 
- 6.72 (/3 = 3.36); (c) r / =  0 (/3 = - 3.36). 

Summary 
To analyze and interpret experimental results, the 
plane-wave solutions of the dynamic theory were 
used. The trouble with the plane-wave theory is that 
its solutions imply Bloch waves created on the 
infinitely extended surface and hypothetically con- 
ceivable waves on the vacuum side that are contin- 
uous with the crystal waves. For the geometries 
considered, the plane-wave solutions are invalid in 
the vicinity of the crystal edge. To obtain the true 
intensity distribution in the neighborhood of the 
edge, the computer simulation should be performed, 
for instance, on the basis of integral equations with 
the influence functions. Actually, the influence func- 
tions can be considered as the amplitudes of wave 
fields inside a crystal in the case of spherical-wave 
diffraction, when the X-ray source is located close 
enough to a crystal surface. Generally, the influence 
functions for the Laue-Bragg case coincide with 
those for the Bragg case. The dynamical theory of 
the X-ray diffraction of a spatially inhomogeneous 
incident wave in perfect crystals and crystals with 
defects, based on the use of relevant integral equa- 
tions, is thoroughly described by Afanas'ev & Kohn 
(1971). 
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Fig. 10. Computed  intensity profiles in the case o f  the type-B 
setting (of. Fig. l b). The height o f  the ridge H,  = 120 ~m. 
o--polarization mode  in all plots. (a) ~ = - 3.36 (/3 = 0); (b) 7 /= 
-6.72 (/3 -- 3.36); (c) n --0 (/3 = -3.36). 
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Abstract 

The structure of the low-symmetry phase near the 
transition point depends on the number of arbitrary 
parameters, which is smaller than that determined by 
the space group GD of this phase. Such a feature 
gives rise to some nontrivial structural effects in the 
vicinity of the transition point: there are numerical 
relationships among the displacements of the atoms 
belonging to different orbits of the Go group. In 
some cases, atoms may be displaced in a direction 
not singled out by symmetry in any of the 230 space 
groups. These effects are revealed by group- 
theoretical methods and the Landau concept of one 
irreducible representation. 

1. Group-theoretical methods for studying the 
structure of low-symmetry phases 

The method of the complete condensate of order 
parameters (hereafter referred to as the COP 
method) has already been proposed for obtaining 
the structure of low-symmetry phases (Sakhnenko, 
Talanov & Chechin, 1986; Chechin, Ivanova & 
Saknenko, 1989). Let G be the space group of the 
original (high-symmetry) phase and Go that of the 
low-symmetry phase that arises from the continuous 
structural transition G~Go (GoCG). The COP 
method allows one to obtain, for the given phase 
transition, the explicit form of the density function 
that describes the Go phase structure in the Landau 
theory (Landau & Lifshitz, 1980). 

The change of the density function 8p(r) for the 
transition G~Go can be written as a sum of the 
contributions Aj that correspond to the different 
irreducible representations (IRs) Fj of dimension nj 

© 1993 International Union of Crystallography 
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of the original group G: 
P P 

6p(r)= Z Aj= Y. [Cj,~j(r)], (1.1) 
j=o j=o 

where p is the total number of these representations. 
Each of the contributions Aj is a formal scalar prod- 
uct of the stationary (invariant) vector Cj = (C), C~, 
... , C~J), which is a multicomponent order param- 
eter, and the vector ~ j =  [~o)(r), ~o~(r), . . . ,  ~o)'. J (r)], 
which determines a set of the basis functions ~0)(r) of 
the I R Fj. The stationary vector may be found from 
the equation 

(Fj*GD)Cj = Cj, (1.2) 

where Fj*GD is the restriction* of the IR Fj of the 
group G to its subgroup GD. Thus, the vector Cj is 
the common eigenvector with the eigenvalue of unity 
of those matrices of the IR Fj that correspond to all 
g EGo. Being the general solution to a system of 
homogeneous linear equations, the stationary vector 
depends on a certain number of arbitrary param- 
eters, which we denote a, b, c . . . .  ; hence, it singles 
out a certain subspace in the space of the representa- 
tion, whose dimension equals the number of these 
arbitrary parameters. The general algorithm for con- 
structing all the stationary vectors for the Fj of 
different IRs corresponding to a given Go phase, 
which constitute the complete condensate of order 
parameters, is given by Sakhnenko, Talanov & Che- 
chin (1986) and Chechin, Ivanova & Sakhnenko 
(1989). The basis functions %(0 are not only 
determined by the IR Fj but also depend on the 
transition type (ordering, displacement etc.) and on 

* The set of matrices of the IR F i of group G corresponding to 
the elements of its subgroup Gt, only. 
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